三角函數是數學考試中一個很重要的知識點,學好三角函數要牢記公式,下面整理了三角函數誘導公式,希望能幫助到大家。

三角函數誘導公式一:任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函數誘導公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函數誘導公式三:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函數誘導公式四:設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函數誘導公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函數誘導公式六:π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα(以上k∈Z)
一、三角函數誘導公式的作用:可以將任意角的三角函數轉化為銳角三角函數。例如:
1、sin390°=sin(360°+30°)=sin30°=1/2.
2、tan225°=tan(180°+45°)=tan45°=1.
3、cos150°=cos(90°+60°)=sin60°=√3/2.
二、三角函數誘導公式的用法:
1、公式一到公式五函數名未改變, 公式六函數名發生改變。
2、公式一到公式五可簡記為:函數名不變,符號看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函數值,等于α的同名三角函數值,前面加上一個把α看成銳角時原函數值的符號。
3、對于kπ/2±α(k∈Z)的三角函數值,
①當k是偶數時,得到α的同名函數值,即函數名不改變;
②當k是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇變偶不變)然后在前面加上把α看成銳角時原函數值的符號。(符號看象限)
三角函數誘導記憶口訣:“奇變偶不變,符號看象限”。
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

三角函數求導公式:(sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1...

1、利用三角函數的有界性,利用三角函數的有界性如|sinx|≤1,|cosx|≤1來求三角函數的最值。2、利用三角函數的增減性,如果f(x)...

三角函數公式不是只能用于直角三角形,三角函數公式對于任意角度,都有其值;相對應的函數值。只是對于直角三角形,三角函數有一個明顯的推理工程,便...

三角函數是初中數學的重要內容,同學們一定要學好三角函數。數學上的很多定理,你要把它記下來很難,但你要是把這個定理求證一遍,它就活靈活現地展現...

三角函數是初中數學的重要知識點,我們一定要仔細研究,好好學習。任意角的集合與一個比值的集合變量之間的映射就是三角函數的本質。通常用平面直角坐...

實際上三角函數這塊內容還是比較好學的,只要掌握了公式的意義,能夠熟練記憶這些公式,在考題中很容易就找到解答方法。希望同學們在日常的學習中要打...

三角函數是初中數學重要知識點,其中包括銳角三角函數定義、三角函數關系、倍角公式、三角和的公式等。我們在學習的過程中要在理解的基礎上加以記憶,...

本文中,小編為大家整理了一些初中三角函數入門知識點,一起來看看吧!