成人国产免费电影_夜色福利刺激_蜜臀av性久久久久蜜臀aⅴ四虎_国产区视频在线观看

    全國

    當(dāng)前位置:

  • 熱門地區(qū):
  • 選擇地區(qū):
  • ×
當(dāng)前位置: 初三網(wǎng) > 新余中考 > 新余中考試題 > 新余數(shù)學(xué)試題 > 正文

2017年江西省新余中考數(shù)學(xué)試題(word版 含答案)

2017-11-22 17:22:29文/王蕊

2017年江西省新余中考數(shù)學(xué)試題(word版 含答案)

為了方便您的閱讀請點擊全屏查看

一、選擇題(本大題共6個小題,每小題3分,共18分.在每小題給出的四個選項中,只有一項是符合題目要求的.)

1.﹣6的相反數(shù)是()

A.????????????? B.﹣????????????? C.6????????????? D.﹣6

2.在國家“一帶一路”戰(zhàn)略下,我國與歐洲開通了互利互惠的中歐班列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學(xué)記數(shù)法表示應(yīng)為()

A.0.13×105????????????? B.1.3×104????????????? C.1.3×105????????????? D.13×103

3.下列圖形中,是軸對稱圖形的是()

A.????????????? B.????????????? C.????????????? D.

4.下列運算正確的是()

A.(﹣a5)2=a10????????????? B.2a?3a2=6a2

C.﹣2a+a=﹣3a????????????? D.﹣6a6÷2a2=﹣3a3

5.已知一元二次方程2x2﹣5x+1=0的兩個根為x1,x2,下列結(jié)論正確的是()

A.x1+x2=﹣????????????? B.x1?x2=1

C.x1,x2都是有理數(shù)????????????? D.x1,x2都是正數(shù)

6.如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是()

A.當(dāng)E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點,且AC⊥BD時,四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形

 

二、填空題(本大題共6小題,每小題3分,滿分18分,將答案填在答題紙上)

7.函數(shù)y=中,自變量x的取值范圍是 ??  .

8.如圖1是一把園林剪刀,把它抽象為圖2,其中OA=OB.若剪刀張開的角為30°,則∠A= ??  度.

9.中國人最先使用負數(shù),魏晉時期的數(shù)學(xué)家劉徽在“正負術(shù)”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為 ??  .

10.如圖,正三棱柱的底面周長為9,截去一個底面周長為3的正三棱柱,所得幾何體的俯視圖的周長是 ??  .

11.已知一組從小到大排列的數(shù)據(jù):2,5,x,y,2x,11的平均數(shù)與中位數(shù)都是7,則這組數(shù)據(jù)的眾數(shù)是 ??  .

12.已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應(yīng)邊為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標(biāo)為 ??  .

 

三、解答題(本大題共5小題,每小題6分,共30分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

13.(1)計算:÷

(2)如圖,正方形ABCD中,點E,F(xiàn),G分別在AB,BC,CD上,且∠EFG=90°.求證:△EBF∽△FCG.

14.解不等式組:,并把解集在數(shù)軸上表示出來.

15.端午節(jié)那天,小賢回家看到桌上有一盤粽子,其中有豆沙粽、肉粽各1個,蜜棗粽2個,這些粽子除餡外無其他差別.

(1)小賢隨機地從盤中取出一個粽子,取出的是肉粽的概率是多少?

(2)小賢隨機地從盤中取出兩個粽子,試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出小賢取出的兩個都是蜜棗粽的概率.

16.如圖,已知正七邊形ABCDEFG,請僅用無刻度的直尺,分別按下列要求畫圖.

(1)在圖1中,畫出一個以AB為邊的平行四邊形;

(2)在圖2中,畫出一個以AF為邊的菱形.

17.如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的“視線角”α約為20°,而當(dāng)手指接觸鍵盤時,肘部形成的“手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)

 

四、(本大題共3小題,每小題8分,共24分).

18.為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的市民共有 ??  人,其中選擇B類的人數(shù)有 ??  人;

(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

19.如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):

單層部分的長度x(cm)

4

6

8

10

150

雙層部分的長度y(cm)

73

72

71

 

 

(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;

(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;

(3)設(shè)挎帶的長度為lcm,求l的取值范圍.

20.如圖,直線y=k1x(x≥0)與雙曲線y=(x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A'PB'.過點A'作A'C∥y軸交雙曲線于點C.

(1)求k1與k2的值;

(2)求直線PC的表達式;

(3)直接寫出線段AB掃過的面積.

 

五、(本大題共2小題,每小題9分,共18分).

21.如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.

(1)如圖2,當(dāng)PD∥AB時,求PD的長;

(2)如圖3,當(dāng)=時,延長AB至點E,使BE=AB,連接DE.

①求證:DE是⊙O的切線;

②求PC的長.

22.已知拋物線C1:y=ax2﹣4ax﹣5(a>0).

(1)當(dāng)a=1時,求拋物線與x軸的交點坐標(biāo)及對稱軸;

(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標(biāo);

②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;

(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.

 

六、(本大題共12分)

23.我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.

特例感知:

(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.

①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= ??  BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 ??  .

猜想論證:

(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.

 


2017年江西省新余中考數(shù)學(xué)試題參考答案與試題解析

 一、選擇題(本大題共6個小題,每小題3分,共18分.在每小題給出的四個選項中,只有一項是符合題目要求的.)

1.﹣6的相反數(shù)是()

A.????????????? B.﹣????????????? C.6????????????? D.﹣6

【考點】14:相反數(shù).

【分析】求一個數(shù)的相反數(shù),即在這個數(shù)的前面加負號.

【解答】解:﹣6的相反數(shù)是6,

故選C

2.在國家“一帶一路”戰(zhàn)略下,我國與歐洲開通了互利互惠的中歐班列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學(xué)記數(shù)法表示應(yīng)為()

A.0.13×105????????????? B.1.3×104????????????? C.1.3×105????????????? D.13×103

【考點】1I:科學(xué)記數(shù)法—表示較大的數(shù).

【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).

【解答】解:將13000用科學(xué)記數(shù)法表示為:1.3×104.

故選B.

3.下列圖形中,是軸對稱圖形的是()

A.????????????? B.????????????? C.????????????? D.

【考點】P3:軸對稱圖形.

【分析】根據(jù)軸對稱圖形的概念求解.

【解答】解:A、不是軸對稱圖形,故A不符合題意;

B、不是軸對稱圖形,故B不符合題意;

C、是軸對稱圖形,故C符合題意;

D、不是軸對稱圖形,故D不符合題意;

故選:C.

4.下列運算正確的是()

A.(﹣a5)2=a10????????????? B.2a?3a2=6a2

C.﹣2a+a=﹣3a????????????? D.﹣6a6÷2a2=﹣3a3

【考點】4I:整式的混合運算.

【分析】根據(jù)整式的運算法則即可求出答案.

【解答】解:(B)原式=6a3,故B錯誤;

(C)原式=a,故C錯誤;

(D)原式=﹣3a4,故D錯誤;

故選(A)

 

5.已知一元二次方程2x2﹣5x+1=0的兩個根為x1,x2,下列結(jié)論正確的是()

A.x1+x2=﹣????????????? B.x1?x2=1

C.x1,x2都是有理數(shù)????????????? D.x1,x2都是正數(shù)

【考點】AB:根與系數(shù)的關(guān)系.

【分析】先利用根與系數(shù)的關(guān)系得到x1+x2=>0,x1x2=>0,然后利用有理數(shù)的性質(zhì)可判定兩根的符合.

【解答】解:根據(jù)題意得x1+x2=>0,x1x2=>0,

所以x1>0,x2>0.

故選D.

6.如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是()

A.當(dāng)E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點,且AC⊥BD時,四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形

【考點】LN:中點四邊形.

【分析】連接四邊形各邊中點所得的四邊形必為平行四邊形,根據(jù)中點四邊形的性質(zhì)進行判斷即可.

【解答】解:A.當(dāng)E,F(xiàn),G,H是各邊中點,且AC=BD時,EF=FG=GH=HE,故四邊形EFGH為菱形,故A正確;

B.當(dāng)E,F(xiàn),G,H是各邊中點,且AC⊥BD時,∠EFG=∠FGH=∠GHE=90°,故四邊形EFGH為矩形,故B正確;

C.當(dāng)E,F(xiàn),G,H不是各邊中點時,EF∥HG,EF=HG,故四邊形EFGH為平行四邊形,故C正確;

D.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可能為菱形,故D錯誤;

故選:D.

 

二、填空題(本大題共6小題,每小題3分,滿分18分,將答案填在答題紙上)

7.函數(shù)y=中,自變量x的取值范圍是 x≥2 .

【考點】E4:函數(shù)自變量的取值范圍.

【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,就可以求解.

【解答】解:依題意,得x﹣2≥0,

解得:x≥2,

故答案為:x≥2.

 

8.如圖1是一把園林剪刀,把它抽象為圖2,其中OA=OB.若剪刀張開的角為30°,則∠A= 75 度.

【考點】KH:等腰三角形的性質(zhì).

【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得到結(jié)論.

【解答】解:∵OA=OB,∠AOB=30°,

∴∠A==75°,

故答案為:75.

 

9.中國人最先使用負數(shù),魏晉時期的數(shù)學(xué)家劉徽在“正負術(shù)”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為 ﹣3 .

【考點】11:正數(shù)和負數(shù).

【分析】根據(jù)有理數(shù)的加法,可得答案.

【解答】解:圖②中表示(+2)+(﹣5)=﹣3,

故答案為:﹣3. 

10.如圖,正三棱柱的底面周長為9,截去一個底面周長為3的正三棱柱,所得幾何體的俯視圖的周長是 8 .

【考點】U2:簡單組合體的三視圖;I9:截一個幾何體.

【分析】根據(jù)從上邊看得到的圖形是俯視圖,可得答案.

【解答】解:從上邊看是一個梯形:上底是1,下底是3,兩腰是2,

周長是1+2+2+3=8,

故答案為:8.

11.已知一組從小到大排列的數(shù)據(jù):2,5,x,y,2x,11的平均數(shù)與中位數(shù)都是7,則這組數(shù)據(jù)的眾數(shù)是 5 .

【考點】W5:眾數(shù);W1:算術(shù)平均數(shù);W4:中位數(shù).

【分析】根據(jù)平均數(shù)與中位數(shù)的定義可以先求出x,y的值,進而就可以確定這組數(shù)據(jù)的眾數(shù)即可.

【解答】解:∵一組從小到大排列的數(shù)據(jù):2,5,x,y,2x,11的平均數(shù)與中位數(shù)都是7,

(2+5+x+y+2x+11)=(x+y)=7,

解得y=9,x=5,

∴這組數(shù)據(jù)的眾數(shù)是5.

故答案為5.

 

12.已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應(yīng)邊為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標(biāo)為 :(,3)或(,1)或(2,﹣2) .

【考點】PB:翻折變換(折疊問題);D5:坐標(biāo)與圖形性質(zhì);LB:矩形的性質(zhì).

【分析】由已知得出∠A=90°,BC=OA=4,OB=AC=7,分兩種情況:(1)當(dāng)點A'在矩形AOBC的內(nèi)部時,過A'作OB的垂線交OB于F,交AC于E,當(dāng)A'E:A'F=1:3時,求出A'E=1,A'F=3,由折疊的性質(zhì)得:OA'=OA=4,∠OA'D=∠A=90°,在Rt△OA'F中,由勾股定理求出OF==,即可得出答案;

②當(dāng)A'E:A'F=3:1時,同理得:A'(,1);

(2)當(dāng)點A'在矩形AOBC的外部時,此時點A'在第四象限,過A'作OB的垂線交OB于F,交AC于E,由A'F:A'E=1:3,則A'F:EF=1:2,求出A'F=EF=BC=2,在Rt△OA'F中,由勾股定理求出OF=2,即可得出答案.

【解答】解:∵點A(0,4),B(7,0),C(7,4),

∴BC=OA=4,OB=AC=7,

分兩種情況:

(1)當(dāng)點A'在矩形AOBC的內(nèi)部時,過A'作OB的垂線交OB于F,交AC于E,如圖1所示:

①當(dāng)A'E:A'F=1:3時,

∵A'E+A'F=BC=4,

∴A'E=1,A'F=3,

由折疊的性質(zhì)得:OA'=OA=4,

在Rt△OA'F中,由勾股定理得:OF==

∴A'(,3);

②當(dāng)A'E:A'F=3:1時,同理得:A'(,1);

 

(2)當(dāng)點A'在矩形AOBC的外部時,此時點A'在第四象限,過A'作OB的垂線交OB于F,交AC于E,如圖2所示:∵A'F:A'E=1:3,則A'F:EF=1:2,

∴A'F=EF=BC=2,

由折疊的性質(zhì)得:OA'=OA=4,

在Rt△OA'F中,由勾股定理得:OF==2

∴A'(2,﹣2);

故答案為:(,3)或(,1)或(2,﹣2).

 

三、解答題(本大題共5小題,每小題6分,共30分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

13.(1)計算:÷

(2)如圖,正方形ABCD中,點E,F(xiàn),G分別在AB,BC,CD上,且∠EFG=90°.求證:△EBF∽△FCG.

【考點】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性質(zhì).

【分析】(1)先把分母因式分解,再把除法運算化為乘法運算,然后約分即可;

(2)先根據(jù)正方形的性質(zhì)得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可判定△EBF∽△FCG.

【解答】(1)解:原式=?

=

(2)證明:∵四邊形ABCD為正方形,

∴∠B=∠C=90°,

∴∠BEF+∠BFE=90°,

∵∠EFG=90°,

∴∠BFE+∠CFG=90°,

∴∠BEF=∠CFG,

∴△EBF∽△FCG.

 

14.解不等式組:,并把解集在數(shù)軸上表示出來.

【考點】CB:解一元一次不等式組;C4:在數(shù)軸上表示不等式的解集.

【分析】分別求出每一個不等式的解集,根據(jù)解集在數(shù)軸上的表示即可確定不等式組的解集.

【解答】解:解不等式﹣2x<6,得:x>﹣3,

解不等式3(x﹣2)≤x﹣4,得:x≤1,

將不等式解集表示在數(shù)軸如下:

則不等式組的解集為﹣3<x≤1 

15.端午節(jié)那天,小賢回家看到桌上有一盤粽子,其中有豆沙粽、肉粽各1個,蜜棗粽2個,這些粽子除餡外無其他差別.

(1)小賢隨機地從盤中取出一個粽子,取出的是肉粽的概率是多少?

(2)小賢隨機地從盤中取出兩個粽子,試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出小賢取出的兩個都是蜜棗粽的概率.

【考點】X6:列表法與樹狀圖法;X4:概率公式.

【分析】(1)直接利用概率公式求出取出的是肉粽的概率;

(2)直接列舉出所有的可能,進而利用概率公式求出答案.

【解答】解:(1)∵有豆沙粽、肉粽各1個,蜜棗粽2個,

∴隨機地從盤中取出一個粽子,取出的是肉粽的概率是:

 

(2)如圖所示:

一共有12種可能,取出的兩個都是蜜棗粽的有2種,

故取出的兩個都是蜜棗粽的概率為: =

 

16.如圖,已知正七邊形ABCDEFG,請僅用無刻度的直尺,分別按下列要求畫圖.

(1)在圖1中,畫出一個以AB為邊的平行四邊形;

(2)在圖2中,畫出一個以AF為邊的菱形.

【考點】N3:作圖—復(fù)雜作圖;L5:平行四邊形的性質(zhì);L8:菱形的性質(zhì).

【分析】(1)連接AF、BE、CG,CG交AF于M,交BE于N.四邊形ABNM是平行四邊形.

(2)連接AF、BE、CG,CG交AF于M,交BE于N,連接DF交BE于H,四邊形MNHF是菱形

【解答】解:(1)連接AF、BE、CG,CG交AF于M,交BE于N.四邊形ABNM是平行四邊形.

 

(2)連接AF、BE、CG,CG交AF于M,交BE于N,連接DF交BE于H,四邊形MNHF是菱形.

 

17.如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的“視線角”α約為20°,而當(dāng)手指接觸鍵盤時,肘部形成的“手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)

【考點】T8:解直角三角形的應(yīng)用.

【分析】(1)Rt△ABC中利用三角函數(shù)即可直接求解;

(2)延長FE交DG于點I,利用三角函數(shù)求得∠DEI即可求得β的值,從而作出判斷.

【解答】解:(1)∵Rt△ABC中,tanA=

∴AB====55(cm);

(2)延長FE交DG于點I.

則DI=DG﹣FH=100﹣72=28(cm).

在Rt△DEI中,sin∠DEI===

∴∠DEI=69°,

∴∠β=180°﹣69°=111°≠100°,

∴此時β不是符合科學(xué)要求的100°.

 

四、(本大題共3小題,每小題8分,共24分).

18.為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的市民共有 800 人,其中選擇B類的人數(shù)有 240 人;

(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

【考點】VC:條形統(tǒng)計圖;V5:用樣本估計總體;VA:統(tǒng)計表;VB:扇形統(tǒng)計圖.

【分析】(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;

(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;

(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.

【解答】解:(1)本次調(diào)查的市民有200÷25%=800(人),

∴B類別的人數(shù)為800×30%=240(人),

故答案為:800,240;

 

(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,

∴A類對應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),

補全條形圖如下:

 

(3)12×(25%+30%+25%)=9.6(萬人),

答:估計該市“綠色出行”方式的人數(shù)約為9.6萬人.

 

19.如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):

單層部分的長度x(cm)

4

6

8

10

150

雙層部分的長度y(cm)

73

72

71

 

 

(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;

(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;

(3)設(shè)挎帶的長度為lcm,求l的取值范圍.

【考點】FH:一次函數(shù)的應(yīng)用.

【分析】(1)觀察表格可知,y是x使得一次函數(shù),設(shè)y=kx+b,利用待定系數(shù)法即可解決問題;

(2)列出方程組即可解決問題;

(3)由題意當(dāng)y=0,x=150,當(dāng)x=0時,y=75,可得75≤l≤150.

【解答】解:(1)觀察表格可知,y是x使得一次函數(shù),設(shè)y=kx+b,

則有,解得

∴y=﹣x+75.

 

(2)由題意,解得

∴單層部分的長度為90cm.

 

(3)由題意當(dāng)y=0,x=150,當(dāng)x=0時,y=75,

∴75≤l≤150.

 

20.如圖,直線y=k1x(x≥0)與雙曲線y=(x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A'PB'.過點A'作A'C∥y軸交雙曲線于點C.

(1)求k1與k2的值;

(2)求直線PC的表達式;

(3)直接寫出線段AB掃過的面積.

【考點】G8:反比例函數(shù)與一次函數(shù)的交點問題;FA:待定系數(shù)法求一次函數(shù)解析式;Q3:坐標(biāo)與圖形變化﹣平移.

【分析】(1)把點P(2,4)代入直線y=k1x,把點P(2,4)代入雙曲線y=,可得k1與k2的值;

(2)根據(jù)平移的性質(zhì),求得C(6,),再運用待定系數(shù)法,即可得到直線PC的表達式;

(3)延長A'C交x軸于D,過B'作B'E⊥y軸于E,根據(jù)△AOB≌△A'PB',可得線段AB掃過的面積=平行四邊形POBB'的面積+平行四邊形AOPA'的面積,據(jù)此可得線段AB掃過的面積.

【解答】解:(1)把點P(2,4)代入直線y=k1x,可得4=2k1,

∴k1=2,

把點P(2,4)代入雙曲線y=,可得k2=2×4=8;

 

(2)∵A(4,0),B(0,3),

∴AO=4,BO=3,

如圖,延長A'C交x軸于D,

由平移可得,A'P=AO=4,

又∵A'C∥y軸,P(2,4),

∴點C的橫坐標(biāo)為2+4=6,

當(dāng)x=6時,y==,即C(6,),

設(shè)直線PC的解析式為y=kx+b,

把P(2,4),C(6,)代入可得

,解得

∴直線PC的表達式為y=﹣x+

 

(3)如圖,延長A'C交x軸于D,

由平移可得,A'P∥AO,

又∵A'C∥y軸,P(2,4),

∴點A'的縱坐標(biāo)為4,即A'D=4,

如圖,過B'作B'E⊥y軸于E,

∵PB'∥y軸,P(2,4),

∴點B'的橫坐標(biāo)為2,即B'E=2,

又∵△AOB≌△A'PB',

∴線段AB掃過的面積=平行四邊形POBB'的面積+平行四邊形AOPA'的面積=BO×B'E+AO×A'D=3×2+4×4=22.

 

五、(本大題共2小題,每小題9分,共18分).

21.如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.

(1)如圖2,當(dāng)PD∥AB時,求PD的長;

(2)如圖3,當(dāng)=時,延長AB至點E,使BE=AB,連接DE.

①求證:DE是⊙O的切線;

②求PC的長.

【考點】MR:圓的綜合題.

【分析】(1)根據(jù)題意首先得出半徑長,再利用銳角三角三角函數(shù)關(guān)系得出OP,PD的長;

(2)①首先得出△OBD是等邊三角形,進而得出∠ODE=∠OFB=90°,求出答案即可;

②首先求出CF的長,進而利用直角三角形的性質(zhì)得出PF的長,進而得出答案.

【解答】解:(1)如圖2,連接OD,

∵OP⊥PD,PD∥AB,

∴∠POB=90°,

∵⊙O的直徑AB=12,

∴OB=OD=6,

在Rt△POB中,∠ABC=30°,

∴OP=OB?tan30°=6×=2

在Rt△POD中,

PD===2

 

(2)①證明:如圖3,連接OD,交CB于點F,連接BD,

=

∴∠DBC=∠ABC=30°,

∴∠ABD=60°,

∵OB=OD,

∴△OBD是等邊三角形,

∴OD⊥FB,

∵BE=AB,

∴OB=BE,

∴BF∥ED,

∴∠ODE=∠OFB=90°,

∴DE是⊙O的切線;

 

②由①知,OD⊥BC,

∴CF=FB=OB?cos30°=6×=3

在Rt△POD中,OF=DF,

∴PF=DO=3(直角三角形斜邊上的中線,等于斜邊的一半),

∴CP=CF﹣PF=3﹣3.

 

22.已知拋物線C1:y=ax2﹣4ax﹣5(a>0).

(1)當(dāng)a=1時,求拋物線與x軸的交點坐標(biāo)及對稱軸;

(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標(biāo);

②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;

(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.

【考點】HA:拋物線與x軸的交點;H6:二次函數(shù)圖象與幾何變換.

【分析】(1)將a=1代入解析式,即可求得拋物線與x軸交點;

(2)①化簡拋物線解析式,即可求得兩個點定點的橫坐標(biāo),即可解題;

②根據(jù)拋物線翻折理論即可解題;

(3)根據(jù)(2)中拋物線C2解析式,分類討論y=2或﹣2,即可解題;

【解答】解:(1)當(dāng)a=1時,拋物線解析式為y=x2﹣4x﹣5=(x﹣2)2﹣9,

∴對稱軸為y=2;

∴當(dāng)y=0時,x﹣2=3或﹣3,即x=﹣1或5;

∴拋物線與x軸的交點坐標(biāo)為(﹣1,0)或(5,0);

 

(2)①拋物線C1解析式為:y=ax2﹣4ax﹣5,

整理得:y=ax(x﹣4)﹣5;

∵當(dāng)ax(x﹣4)=0時,y恒定為﹣5;

∴拋物線C1一定經(jīng)過兩個定點(0,﹣5),(4,﹣5);

②這兩個點連線為y=﹣5;

將拋物線C1沿y=﹣5翻折,得到拋物線C2,開口方向變了,但是對稱軸沒變;

∴拋物線C2解析式為:y=﹣ax2+4ax﹣5,

 

(3)拋物線C2的頂點到x軸的距離為2,

則x=2時,y=2或者﹣2;

當(dāng)y=2時,2=﹣4a+8a﹣5,解得,a=

當(dāng)y=﹣2時,﹣2=﹣4a+8a﹣5,解得,a=

∴a=

 

六、(本大題共12分)

23.我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.

特例感知:

(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.

①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD=  BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 4 .

猜想論證:

(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.

【考點】LO:四邊形綜合題.

【分析】(1)①首先證明△ADB′是含有30°是直角三角形,可得AD=AB′即可解決問題;

②首先證明△BAC≌△B′AC′,根據(jù)直角三角形斜邊中線定理即可解決問題;

(2)結(jié)論:AD=BC.如圖1中,延長AD到M,使得AD=DM,連接E′M,C′M,首先證明四邊形AC′MB′是平行四邊形,再證明△BAC≌△AB′M,即可解決問題;

(3)存在.如圖4中,延長AD交BC的延長線于M,作BE⊥AD于E,作線段BC的垂直平分線交BE于P,交BC于F,連接PA、PD、PC,作△PCD的中線PN.連接DF交PC于O.想辦法證明PA=PD,PB=PC,再證明∠APD+∠BPC=180°,即可;

【解答】解:(1)①如圖2中,

∵△ABC是等邊三角形,

∴AB=BC=AB=AB′=AC′,

∵DB′=DC′,

∴AD⊥B′C′,

∵∠BAC=60°,∠BAC+∠B′AC′=180°,

∴∠B′AC′=120°,

∴∠B′=∠C′=30°,

∴AD=AB′=BC,

故答案為

 

②如圖3中,

∵∠BAC=90°,∠BAC+∠B′AC′=180°,

∴∠B′AC′=∠BAC=90°,

∵AB=AB′,AC=AC′,

∴△BAC≌△B′AC′,

∴BC=B′C′,

∵B′D=DC′,

∴AD=B′C′=BC=4,

故答案為4.

 

(2)結(jié)論:AD=BC.

理由:如圖1中,延長AD到M,使得AD=DM,連接E′M,C′M

∵B′D=DC′,AD=DM,

∴四邊形AC′MB′是平行四邊形,

∴AC′=B′M=AC,

∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,

∴∠BAC=∠MB′A,∵AB=AB′,

∴△BAC≌△AB′M,

∴BC=AM,

∴AD=BC.

 

(3)存在.

理由:如圖4中,延長AD交BC的延長線于M,作BE⊥AD于E,作線段BC的垂直平分線交BE于P,交BC于F,連接PA、PD、PC,作△PCD的中線PN.

連接DF交PC于O.

∵∠ADC=150°,

∴∠MDC=30°,

在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,

∴CM=2,DM=4,∠M=60°,

在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,

∴EM=BM=7,

∴DE=EM﹣DM=3,

∵AD=6,

∴AE=DE,∵BE⊥AD,

∴PA=PD,PB=PC,

在Rt△CDF中,∵CD=2,CF=6,

∴tan∠CDF=

∴∠CDF=60°=∠CPF,

易證△FCP≌△CFD,

∴CD=PF,∵CD∥PF,

∴四邊形CDPF是矩形,

∴∠CDP=90°,

∴∠ADP=∠ADC﹣∠CDP=60°,

∴△ADP是等邊三角形,

∴∠ADP=60°,∵∠BPF=∠CPF=60°,

∴∠BPC=120°,

∴∠APD+∠BPC=180°,

∴△PDC是△PAB的“旋補三角形”,

在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=

∴PN===

2017年7月4日

查看更多【新余數(shù)學(xué)試題】內(nèi)容
成人国产免费电影_夜色福利刺激_蜜臀av性久久久久蜜臀aⅴ四虎_国产区视频在线观看

                国产原创一区二区三区| 精品久久久久久久久久久久包黑料 | 亚洲综合免费观看高清完整版在线 | 日本一区二区三区四区在线视频| 国产欧美久久久精品影院| 欧美aaaaaa午夜精品| 在线观看日产精品| 国产精品福利一区二区三区| 国精品**一区二区三区在线蜜桃| 欧美三级蜜桃2在线观看| 欧美一区二区三区免费| 日韩欧美的一区二区| 午夜视频一区二区三区| 91丝袜美腿高跟国产极品老师 | 日韩欧美不卡一区| 午夜精品一区二区三区免费视频| 色综合天天做天天爱| 日韩一二三区不卡| 日韩精品一区在线观看| 日本视频一区二区三区| 欧美精品在线观看播放| 亚洲午夜av在线| 在线免费不卡电影| 伊人婷婷欧美激情| 99精品欧美一区二区三区综合在线| 日本一区二区三区四区在线视频 | 国产精品国产三级国产三级人妇 | 欧美videofree性高清杂交| 三级不卡在线观看| 欧美一区二区三区四区久久| 天天操天天综合网| 中文字幕不卡在线播放| 岛国精品在线播放| 国产精品成人免费在线| 久久国产婷婷国产香蕉| 91麻豆免费看| 亚洲伦在线观看| 91久久精品国产91性色tv| 国产精品福利av | 美女久久久精品| 日韩情涩欧美日韩视频| 久久精品国产澳门| 精品视频一区二区不卡| 日韩电影在线观看一区| 99精品国产99久久久久久白柏| 亚洲欧美日韩精品久久久久| 欧美色视频在线| 亚洲成人免费在线观看| 国产精品中文有码| 国产精品国产馆在线真实露脸| 亚洲成人1区2区| 日韩美女一区二区三区四区| 国产成人99久久亚洲综合精品| 国产欧美综合在线观看第十页| 国产在线精品免费av| 国产欧美日韩久久| 色综合久久久久久久久久久| 亚洲综合色自拍一区| 欧美肥胖老妇做爰| 精品一区二区在线观看| 国产三级欧美三级| 日韩黄色在线观看| 精品国产乱码久久久久久蜜臀| 久久精品国产一区二区三区免费看| 久久久亚洲欧洲日产国码αv| 成人综合在线观看| 一区二区三区中文字幕| 日韩亚洲电影在线| 蜜乳av一区二区三区| 亚洲国产精品黑人久久久| 99久久久国产精品| 午夜日韩在线观看| 精品欧美一区二区三区精品久久 | 高清国产一区二区三区| 亚洲三级在线播放| 91精品福利在线一区二区三区 | 乱一区二区av| 欧美高清视频在线高清观看mv色露露十八 | 一区二区三区中文在线观看| 欧美一区二区美女| 成人动漫精品一区二区| 亚洲午夜精品在线| 99riav久久精品riav| 日韩精品福利网| 国产精品你懂的在线欣赏| 欧美日韩精品一区二区天天拍小说 | 日本国产一区二区| 激情另类小说区图片区视频区| 亚洲国产成人午夜在线一区| 欧美日韩亚洲综合在线 | 床上的激情91.| 国产精品综合一区二区| 精品一区二区日韩| 秋霞国产午夜精品免费视频| 午夜伊人狠狠久久| 亚洲一区二区四区蜜桃| 有码一区二区三区| 亚洲欧美经典视频| 自拍偷在线精品自拍偷无码专区| 欧美国产精品v| 国产免费久久精品| 国产蜜臀av在线一区二区三区| 久久久精品国产免大香伊| 精品成人免费观看| 精品粉嫩aⅴ一区二区三区四区| 日韩免费视频一区| 日韩精品影音先锋| wwww国产精品欧美| 久久综合丝袜日本网| 精品国产91久久久久久久妲己| 26uuu色噜噜精品一区二区| 精品日韩一区二区三区免费视频| 日韩欧美激情四射| 精品日韩欧美在线| 久久久欧美精品sm网站| 久久久久九九视频| 中文乱码免费一区二区| 国产精品嫩草影院av蜜臀| 成人免费在线视频| 亚洲精品视频在线观看网站| 亚洲资源在线观看| 午夜国产精品影院在线观看| 日韩av网站免费在线| 免费高清在线一区| 国产一区二区导航在线播放| 国产高清不卡一区| 99久久精品免费看国产| 日本伦理一区二区| 欧美日本高清视频在线观看| 欧美一区二区免费| 国产午夜精品在线观看| 中文一区二区在线观看| 亚洲黄色在线视频| 日韩激情av在线| 国产精品亚洲专一区二区三区| 成人丝袜高跟foot| 色噜噜狠狠成人网p站| 欧美二区乱c少妇| 亚洲精品一区二区三区香蕉| 国产日韩欧美一区二区三区综合| 中文字幕在线不卡一区| 亚洲在线一区二区三区| 青青草97国产精品免费观看无弹窗版| 精品亚洲成a人在线观看| 丁香一区二区三区| 91久久精品国产91性色tv| 欧美一区二区三区在线视频| 日韩美女视频在线| 中文字幕成人在线观看| 亚洲永久免费av| 蜜臂av日日欢夜夜爽一区| 懂色av中文字幕一区二区三区| 色婷婷亚洲综合| 日韩欧美一区二区三区在线| 国产精品色婷婷久久58| 亚洲高清在线精品| 激情另类小说区图片区视频区| jlzzjlzz亚洲日本少妇| 欧美人妖巨大在线| 久久精品一区二区三区四区| 亚洲毛片av在线| 精品综合久久久久久8888| a在线欧美一区| 欧美一级生活片| 国产精品萝li| 日韩av一二三| 91啪亚洲精品| 精品日韩一区二区三区 | 亚洲综合另类小说| 国产一区二区三区在线观看免费 | 不卡的av中国片| 9191久久久久久久久久久| 欧美国产一区视频在线观看| 亚洲成人自拍网| 成人午夜激情片| 欧美一三区三区四区免费在线看| 国产精品色一区二区三区| 日本特黄久久久高潮| 99综合影院在线| 日韩精品一区二区三区中文不卡 | 久久精品人人做人人综合| 亚洲精品中文在线| 国产美女在线观看一区| 欧美日韩日日摸| 中文字幕av在线一区二区三区| 午夜一区二区三区在线观看| 国产麻豆午夜三级精品| 欧美少妇性性性| 国产精品午夜久久| 青青草97国产精品免费观看 | 国产亚洲一区二区三区四区| 亚洲va国产天堂va久久en| 成人免费视频网站在线观看| 欧美精品一二三| 日韩码欧中文字| 国产乱一区二区| 欧美日韩高清在线播放| 国产精品久久久久久久浪潮网站| 蜜臀av亚洲一区中文字幕| 欧美性一二三区|